Negative Numbers in Simple Arithmetic

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Understanding and Using Principles of Arithmetic: Operations Involving Negative Numbers

Previous work has investigated adults' knowledge of principles for arithmetic with positive numbers (Dixon, Deets, & Bangert, 2001). The current study extends this past work to address adults' knowledge of principles of arithmetic with a negative number, and also investigates links between knowledge of principles and problem representation. Participants (N = 44) completed two tasks. In the Eval...

متن کامل

Palindromic Numbers in Arithmetic Progressions

Integers have many interesting properties. In this paper it will be shown that, for an arbitrary nonconstant arithmetic progression {an}TM=l of positive integers (denoted by N), either {an}TM=l contains infinitely many palindromic numbers or else 10|aw for every n GN. (This result is a generalization of the theorem concerning the existence of palindromic multiples, cf. [2].) More generally, for...

متن کامل

Carmichael Numbers in Arithmetic Progressions

We prove that when (a, m) = 1 and a is a quadratic residue mod m, there are infinitely many Carmichael numbers in the arithmetic progression a mod m. Indeed the number of them up to x is at least x1/5 when x is large enough (depending on m). 2010 Mathematics subject classification: primary 11N25; secondary 11A51.

متن کامل

On Carmichael numbers in arithmetic progressions

Assuming a weak version of a conjecture of Heath-Brown on the least prime in a residue class, we show that for any coprime integers a and m > 1, there are infinitely many Carmichael numbers in the arithmetic progression a mod m.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Quarterly Journal of Experimental Psychology

سال: 2010

ISSN: 1747-0218,1747-0226

DOI: 10.1080/17470210903564359